The teaching of physics for combined sciences at the Ecclesbourne School follows a 5 year spiral curriculum based on resources produced through the Oxford University Press via their Kerboodle system. There is emphasis on both substantive knowledge and disciplinary knowledge with numerous opportunities to develop skills to work scientifically. The order tells a coherent and logical story through physics. Students are continually challenged and moved forward, with curiosity and investigation encouraged throughout.

Teaching of KS4 Physics Separate Science

The order of teaching KS4 is taught sequentially with the GCSE AQA Physics 3rd Edition Oxford University Press student textbook*. This is aligned to the AQA specification. The scheme of work has been developed by Jim Breithaupt. The sequencing of substantive knowledge reflects its hierarchical nature. The teaching of disciplinary skills and knowledge are linked to areas of the content where teaching is appropriate. This order is aligned with completion of GCSE Physics Paper 1 and Paper 2 sequentially. This allows for assessment of progress at the end of Year 10 in line with Biology and Chemistry.

* In 2020/21 Year 9 Chapter P2 was deferred to Y10 to allow for practical work to be completed by pupils.

Paper 1	<u> </u>		
Year	Торіс	Term	Content
9	6.1 Energy	1-3	Conservation and dissipation of energy
			Energy transfer by heating
			Energy resources
			Eneray is needed to make objects move and keep devices such as
			mobile phones working.
			The ability to access energy at the flick of a switch makes life
			easier. People in developing countries aspire to access energy as
			easily while those in developed countries are burning too much fuel
			and are endanaering our planet by making the atmosphere
			warmer
			In this section students learn about measuring and using energy and
			how wind turbines for example don't burn fuel so could enable
			everyone to have access to energy
			This topic is taught first as it underning the whole course. All
			subsequent topics can be linked to this section. Delivered over 1
			lesson a week allowing time for completion of required practical
			activities
10	C 2 Electricity	1	activities.
10	0.2 Electricity	Ŧ	Electrical circuits Energy in the here
			Energy III the nome Electric charge is a fundamental preparty of matter over where
			Electrical newsr fills the modern world with artificial light and
			Electrical power jins the modern world with artificial light and
			sound, information and entertainment, remote sensing and
			control. In this topic students build electric circuits and learn now,
			together with different components, they transfer
			energy. They then learn now electricity is used safely in the nome,
			powering our everyddy life.
			whole electricity topic taught in sequence to allow for the
10	C 2 Darticla model	2	application of knowledge as the dean increases inrough the topic
10	of matter	Z	INDIECUIES and matter The particle model of matter is regarded by some as hymenities
	ormatter		areatest scientific model. It is widely used to predict the behaviour
			of solids, liquids and access and this has many applications in
			of solids, liquids and gases and this has many applications in
			everyady life. In this topic students develop this concept to explain a
			where range of observations across the 3 states of matter, find out
			what happens when a material changes state and learn now to
			measure the density of materials.
			Overlap with GCSE Chemistry on structure of atom – provides an
			opportunity to allow for application on knowledge and
			understanding. Particle models are developed juriner with their
10	6 4 Padioactivity	2	Padioactivity
10	0.4 Radioactivity	2	Radioactivity Although radioactivity was discovered over a century ago, it took
			Annough rudiouclivity was discovered over a century ago, it took
			of stome, nuclear forces and stability. In this section students loarn
			by atoms, nuclear forces and stability. In this section students learn
			now the model of the dominas evolved, observe the different types
			of rudiation and now they behave, and see that ionising radiation is
			nuzuruous it can be very usejui.
			structure of the atom is SAIVIE content delivered in GCSE Chemistry
			- review and built on jor impacts and uses of radiation. Topic
			requires a nigh level of understanding so is delivered towards the
			ena of Y10

Paper	2		
11	6.5 Forces	1	 Forces in balance Motion Force and motion Force and pressure Forces are an energy pathway that allow us to change our world. Whether this be through movement, design of structures or application of materials, you just can't get away from forces. In this topic students learn about the laws that govern them, the mathematics that describes them and how we use them to explain events and make the world safer. They also investigate the relationship between force and extension of a spring and determine how force is linked to acceleration. To allow for assessments in line with GCSE Papers, this and the following topics are always taught after Paper 1 topics. This allows for consistent assessment in line with GCSE papers, using the Secure Key materials from AQA, examination mark schemes and published arade boundaries
11	6.6 Waves	2	 Wave properties Electromagnetic waves Light Waves are an energy pathway that carry information. When you speak into your mobile phone sound waves carry information. Doctors use X-rays and ultrasonic waves to visualise objects inside the body. In this section students learn about waves and their properties. They carry out investigations into how waves move in water and in solids as well as how different materials emit and absorb waves. Students understand what makes waves so important, study the family of waves called the electromagnetic spectrum and identify their many applications. Builds on foundations from radioactivity topic – focusing on specific medicinal uses and applications of radiation.
11	6.7 Magnetism and electromagnetism	2	Electromagnetism Two magnets attract or repel each other without being in contact. We use the idea of magnetic fields to explain this. An electric current in a wire also produces a magnetic field. These affects are known as electromagnetism. In this topic students find evidence for the existence of magnetic fields around magnets and current carrying wires. Finally, students see how these affects can be combined to produce motion. Challenging motor effects taught towards the end of Year 11.
11	6.8 Space	2	 Space Questions about where we are, and where we came from, have been asked for thousands of years. In the past century, astronomers and astrophysicists have made remarkable progress in understanding the scale and structure of the universe, its evolution and ours. New questions have emerged recently. In this topic students study our Solar System and learn that stars also have a life-cycle. They see how theories about the development of the Universe, such as the Big Bang theory, are based on astronomical observations and ideas such as red-shift and dark energy. Stand-alone topic, can taught towards the end of Y11, link to maths skills developed across the course

* In 2020/21 Year 9 Chapter P2 was deferred to Y10 to allow for practical work to be completed by pupils.