This qualification is linear, with all of the assessments of the program of study occurring at the end of Year 11 during the summer exam season. Students will start this qualification in December of Year 9 following the completion of the KS3 Program of study. This is to allow the full breadth and depth of the KS4 course to be delivered allowing us to stretch and challenge the most-able to master the course and achieve the top grades, and also allow time for support and differentiation where required. The topics studied during Year 9 appear on both the Trilogy specification and the Separate Science specification to allow for co-teaching. Following the options process started in Year 9, student will then move onto their specific chosen science course as they enter Year 10.

During Year 9 student will be taught 3 lessons of Science per week, one for Biology, Chemistry and Physics. In Year 10, students have 5 hours of Science curriculum, we follow a rotation timetable system to allow an even spread of time for the 3 sciences. In Year 11, students have 7 hours of science curriculum time, spread across the 3 subjects.

The aim of the GCSE Chemistry course is:

- Impart a systematic body of scientific knowledge and facts, and an understanding of scientific concepts, principles, themes and patterns in chemistry.
- Further students' appreciation of the practical nature of chemistry, developing experimental skills based on correct and safe laboratory techniques, developing analytical and evaluative skills to determine clear conclusions.
- Develop application skills to allow students to 'think outside the box' with unfamiliar examples, applying their knowledge and understanding of key chemical processes and systems.
- Develop an appreciation of the importance of accurate experimental work to scientific method and reporting, ensuring complicated methods are followed and measurements recorded to a high level of precision.
- Develop the application of specific mathematics skills used in chemistry.
- Develop students' ability to form hypotheses and design experiments to test them, writing clear methods identifying specific apparatus and techniques required.
- Sustain and develop an enjoyment of, and interest in, the world of chemistry and its applications.
- Foster an appreciation of the significance of chemistry in wider personal, social, environmental, economic and technological contexts, with a consideration of ethical issues
- Develop future Scientists who will continue the study of Chemistry onto A level and Higher Education

Key ideas.

• matter is composed of tiny particles called atoms and there are about 100 different naturally occurring types of atoms called elements

- elements show periodic relationships in their chemical and physical properties
- these periodic properties can be explained in terms of the atomic structure of the elements
- atoms bond by either transferring electrons from one atom to another or by sharing electrons
- the shapes of molecules (groups of atoms bonded together) and the way giant structures are arranged is of great importance in terms of the way they behave
- there are barriers to reaction so reactions occur at different rates
- chemical reactions take place in only three different ways:
- proton transfer, electron transfer and electron sharing
- energy is conserved in chemical reactions so can therefore be neither created or destroyed.

Prior learning

Science is a core subject that students have studied at KS3, the aim of KS4 Science is to build on these foundations as part of our spiral curriculum, increasing the level of demand and challenge as students' cognitive ability develops. The rationale behind the teaching order is to ensure the building blocks are in place as we progress through the topics, allowing students to fully access each topic. There are season considerations too, with Photosynthesis topics and ecology topics being studied during the summer months to allow for practical activities to take place.

Year	Торіс	Term	Content	Paper
9	4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes	Spring	 4.1.1.1 Atoms, elements and compounds 4.1.1.2 Mixtures 4.1.1.3 The development of the model of the atom (common content with physics) 4.1.1.4 Relative electrical charges of subatomic particles 4.1.1.5 Size and mass of atoms 4.1.1.6 Relative atomic mass 4.1.1.7 Electronic structure The underlying principles of subatomic particles, shells and RAM which lay foundations for later principles of bonding, structure, group trends, reactions and calculations in chemistry. 	1
9	4.1.2 The periodic table	Summer	 4.1.2.1 The periodic table 4.1.2.2 Development of the periodic table 4.1.2.3 Metals and non-metals 4.1.2.4 Group 0 4.1.2.5 Group 1 4.1.2.6 Group 7 	1
9	4.1.3 Properties of transition metals	Summer	 4.1.3.1 Comparison with Group 1 metals 4.1.3.1 Typical properties An appreciation and understanding of the history of the Periodic Table, and how the arrangement of elements and reactivity trends in groups can be linked to atomic structure from the previous unit 4.1.1 	1
9/10	4.2 Bonding, structure, and the properties of matter	Summer/Autumn	 4.2.1 Chemical bonds, ionic, covalent and metallic 4.2.1.1 Chemical bonds 4.2.1.2 Ionic bonding 4.2.1.3 Ionic compounds 4.2.1.4 Covalent bonding 4.2.1.5 Metallic bonding 	1
10	4.2.2 How bonding and structure are related to the properties of substances	Autumn	 4.2.2.1 The three states of matter 4.2.2.2 State symbols 4.2.2.3 Properties of ionic compounds 4.2.2.4 Properties of small molecules 4.2.2.5 Polymers 4.2.2.6 Giant covalent structures 4.2.2.7 Properties of metals and alloys 4.2.2.8 Metals as conductors 	1

<u>Delivery</u>

10	4.2.3 Structure		4.2.3.1 Diamond	1
	and bonding of		4.2.3.2 Graphite	
	carbon		4.2.3.3 Graphene and fullerenes	
10	4.2.4 Bulk and		4.2.4.1 Size of particles and their	
	surface		properties	
	properties of		4.2.4.2 Uses of nanoparticles	
	matter including		A full coverage of the main aspects of	
	nanoparticles		structure and bonding, using concepts	
			from 4.1.1 and 4.1.2, which are	
			fundamental as part of the	
			comprehension for the rest of the	
			course, as the theories can be used to	
			explain the physical and chemical	
			properties of substances. Also, used to	
			underpin formulae and balanced	
			symbol questions with state symbols.	
10	4.3.1 Chemical	Autumn	4.3.1.1 Conservation of mass and	1
	measurements,		balanced chemical equations	
	conservation of		4.3.1.2 Relative formula mass	
	mass and the		4.3.1.3 Mass changes when a reactant	
	quantitative		or product is a gas	
	interpretation of		4.3.1.4 Chemical measurements	
	chemical			
	equations			
	4.3.2 Use of		4.3.2.1 Moles (HT only)	1
	amount of substance in		4.3.2.2 Amounts of substances in	
	relation to		equations (HT only) 4.3.2.3 Using moles to balance	
	masses of pure		equations (HT only)	
	substances		4.3.2.4 Limiting reactants (HT only)	
	Substances		4.3.2.5 Concentration of solutions	
	4.3.3 Yield and		4.3.3.1 Percentage yield	1
	atom economy		4.3.3.2 Atom economy	-
	of chemical			
	reactions			
	4.3.4 Using			1
	concentration of			
	solutions in			
	mol/dm³			
	4.3.5 Use of		Quantitative analysis is used to	1
	amount of		determine compound formulae,	
	substance in		reaction equations and monitor yield.	
	relation to		This unit is a key part of chemical	
	volumes of		language and theory and underpins	
	gases		future content both in a theoretical and	
			practical sense.	
10	4.4.1 Reactivity	Spring	4.4.1.1 Metal oxides	1
	of metals		4.4.1.2 The reactivity series	

				1
			4.4.1.3 Extraction of metals and	
			reduction	
			4.4.1.4 Oxidation and reduction in	
			terms of electrons (HT only)	
	4.4.2 Reactions		4.4.2.1 Reactions of acids with metals	1
	of acids		4.4.2.2 Neutralisation of acids and salt	
			production	
			4.4.2.3 Soluble salts	
			4.4.2.4 The pH scale and neutralisation	
			4.4.2.5 Titrations	
			4.4.2.6 Strong and weak acids (HT only)	
	4.4.3 Electrolysis		4.4.3.1 The process of electrolysis	1
			4.4.3.2 Electrolysis of molten ionic	
			compounds	
			4.4.3.3 Using electrolysis to extract	
			metals	
			4.4.3.4 Electrolysis of aqueous solutions	
			4.4.3.5 Representation of reactions at	
			electrodes as half equations (HT only)	
			Knowing and understanding chemical	
			reactions allows students to make	
			predictions (from principles in 4.2) of	
			new substances as well as uses and	
			applications. Methods of extracting	
			materials from our planet using	
			electrolysis and other methods to	
			enhance our lives is also explored using	
			underlying principles from the unit. Titration work further builds and	
			develops on quantitative analysis from	
			4.3. Electrolysis also prepares students	
			for chemical and fuel cells in the next	
10	4.5.4		unit.	
10	4.5.1	Summer	4.5.1.1 Energy transfer during	1
	Exothermic and		exothermic and endothermic reactions	
	endothermic		4.5.1.2 Reaction profiles	
	reactions		4.5.1.3 The energy change of reactions	
			(HT only	
	4.5.2 Chemical		4.5.2.1 Cells and batteries	1
	cells and fuel		4.5.2.2 Fuel cells	
	cells		Energy changes are a fundamental part	
			of chemistry and underpin later	
			concepts of kinetics and equilibria. The	
			topic serves as useful end to Paper 1	
			content and the Year 10 course.	
10/11	4.6.1 Rate of	Summer/Autumn	4.6.1.1 Calculating rates of reactions	2
	reaction		4.6.1.2 Factors which affect the rates of	
			chemical reactions	
			4.6.1.3 Collision theory and activation	
			energy	
		ı		

		4.6.1.4 Catalysts	
11	4.6.2 Reversible	4.6.2.1 Reversible reactions	2
	reactions and	4.6.2.2 Energy changes and reversible	
	dynamic	reactions	
	equilibrium	4.6.2.3 Equilibrium	
		4.6.2.4 The effect of changing	
		conditions on equilibrium (HT only)	
		4.6.2.5 The effect of changing	
		concentration (HT only)	
		4.6.2.6 The effect of temperature	
		changes on equilibrium (HT only)	
		4.6.2.7 The effect of pressure changes	
		on equilibrium (HT only)	
		How fast chemical reactions occur and	
		how far they occur are imperative	
		concepts of physical chemistry. A lot of	
		important ideas from Paper 1 are	
		revisited and developed here.	
		The Haber process is used as a basis of	
		Le Chatelier's principle and then	
		revised later in the course.	
11	4.7.1 Carbon	4.7.1.1 Crude oil, hydrocarbons and	2
	compounds as	alkanes	2
	fuels and	4.7.1.2 Fractional distillation and	
	feedstock	petrochemicals	
	TEEUSLOCK	4.7.1.3 Properties of hydrocarbons	
		4.7.1.4 Cracking and alkenes	
11	4.7.2 Reactions	4.7.2.1 Structure and formulae of	2
11	of alkenes and	alkenes	2
	alcohols	4.7.2.1 Reactions of alkenes	
	alconois	4.7.2.3 Alcohols	
		4.7.2.4 Carboxylic acids	
11	4.7.3 Synthetic	4.7.3.1 Addition polymerisation	
**	and naturally	4.7.3.2 Condensation polymerisation	
	occurring	4.7.3.2 Condensation polymensation 4.7.3.3 Amino acids	
	polymers	4.7.3.4 DNA	
	porymers	Organic chemistry is an important	
		separate branch of chemistry.	
		Principles of bondng, structure and	
		chemical changes from Year 10 are	
		fundamental here and may be revisited	
		briefly. A comprehension of organic	
		chemistry allows students to appreciate	
		that new and useful products such as	
		medicines, flavourings, plastics, fibres	
		and fuels stem from specialists in this	
		field	
11		4.8.1.1 Pure substances	2
11	4.8.1 Purity, formulations	4.8.1.1 Pure substances 4.8.1.2 Formulations	2
	and		
	chromatography	4.8.1.3 Chromatography	
	cinomatography		

11	100		4 8 2 1 Test for budrages	2
11	4.8.2 Identification of		4.8.2.1 Test for hydrogen 4.8.2.2 Test for oxygen	2
	common gases		4.8.2.3 Test for carbon dioxide	
	common gases		4.8.2.4 Test for chlorine	
11	4.8.3		4.8.3.1 Flames tests	2
11	4.6.5 Identification of		4.8.3.2 Metal hydroxides	2
			4.8.3.3 Carbonates	
	ions by chemical		4.8.3.4 Halides	
	and		4.8.3.5 Sulfates	
	spectroscopic means		4.8.3.6 Instrumental methods	
	means			
			4.8.3.7 Flame emission spectroscopy	
			Chemical analysis is best taught near	
			the end of a course as its serves as a	
			revision of previous and new chemical	
			reactions but also how those reactions	
			can be used to identify unknown	
			substances in a variety of contexts. A	
			useful comparison is made of chemical	
			and more modern instrumental	
14			methods (developed hugely at A level)	
11	4.9.1 The		4.9.1.1 The proportions of different	2
	composition and		gases in the atmosphere	
	evolution of the		4.9.1.2 The Earth's early atmosphere	
	Earth's		4.9.1.3 How oxygen increased	
	atmosphere		4.9.1.4 How carbon dioxide decreased	-
11	4.9.2 Carbon		4.9.2.1 Greenhouse gases	2
	dioxide and		4.9.2.2 Human activities which	
	methane as		contribute to an increase in greenhouse	
	greenhouse		gases in the atmosphere	
	gases		4.9.2.3 Global climate change	
			4.9.2.4 The carbon footprint and its	
1.	4000		reduction	
11	4.9.3 Common		4.9.3.1 Atmospheric pollutants from	2
	atmospheric		fuels	
	pollutants and		4.9.3.2 Properties and effects of	
	their sources		atmospheric pollutants	
			A standalone unit which demonstrates	
			an appreciation of atmospheric	
			chemistry as well as revising chemical	
1.4	4 40 4 11-200 11	Carias	reactions and equations.	
11	4.10.1 Using the	Spring	4.10.1.1 Using the Earth's resources	2
	Earth's		and sustainable development	
	resources and		4.10.1.2 Potable water	
	obtaining		4.10.1.3 Waste water treatment	
	potable water		4.10.1.4 Alternative methods of	
			extracting metals (HT only)	
4.4	4.40.2115			2
11	4.10.2 Life cycle		4.10.2.1 Life cycle assessment	2
	assessment and recycling		4.10.2.2 Ways of reducing the use of	
		1	resources	

11	4.10.3 Using materials	4.10.3.1 Corrosion and its prevention 4.10.3.2 Alloys as useful materials 4.10.3.3 Ceramics
11	4.10.4 The Haber process and the use of NPK fertilisers	4.10.4.1 The Haber process 4.10.4.2 Production and uses of NPK fertilisers A splendid way to complete a chemistry course by looking at the chemistry of materials found naturally and produced synthetically as well as a wide range of applications of theoretical (bonding and structure) and experimental chemistry to show how chemists can develop materials and processes which can enhance society in the world at large. Also, a responsible look at sustainability and environmental impact.

Assessment at end of topics – At the end of each major topic, there is an end of topic assessment, this has been created using EXAMPRO (AQA exam question database), with assessments being created in line with the AQA Science papers, for the correct balance of high, medium and low demand questions for Higher / Foundation tiers.

Final external assessment breakdown table

Paper 1:

What's assessed

Topics 1–5: Atomic structure and the periodic table; Bonding, structure, and the properties of matter; Quantitative chemistry, Chemical changes; and Energy changes.

How it's assessed

- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

Questions

• Multiple choice, structured, closed short answer and open response.

t

Paper 2:

What's assessed

Topics 6–10: The rate and extent of chemical change; Organic chemistry; Chemical analysis, Chemistry of the atmosphere; and Using resources.

How it's assessed

- Written exam: 1 hour 45 minutes
- Foundation and Higher Tier
- 100 marks
- 50% of GCSE

Questions

· Multiple choice, structured, closed short answer and open response.

Further curriculum support:

www.kerboodle.com – online textbook

Seneca learning

BBC Bitesize – Trilogy - https://www.bbc.co.uk/bitesize/examspecs/z8r997h

CPG Complete revision and Practice Book

CGP Required Practical exam skills book – 10 minute tests

Enrichment activities

GCSE Science Live event in Birmingham / Sheffield (Year 10)

Progression – where can subject take you

GCSE Chemistry provides an excellent platform to the progression onto KS5 A levels in Biology, Chemistry, Physics and Psychology.